Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.754
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(6): 3419-3432, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38426934

RESUMO

Betacoronaviruses are a genus within the Coronaviridae family of RNA viruses. They are capable of infecting vertebrates and causing epidemics as well as global pandemics in humans. Mitigating the threat posed by Betacoronaviruses requires an understanding of their molecular diversity. The development of novel antivirals hinges on understanding the key regulatory elements within the viral RNA genomes, in particular the 5'-proximal region, which is pivotal for viral protein synthesis. Using a combination of cryo-electron microscopy, atomic force microscopy, chemical probing, and computational modeling, we determined the structures of 5'-proximal regions in RNA genomes of Betacoronaviruses from four subgenera: OC43-CoV, SARS-CoV-2, MERS-CoV, and Rousettus bat-CoV. We obtained cryo-electron microscopy maps and determined atomic-resolution models for the stem-loop-5 (SL5) region at the translation start site and found that despite low sequence similarity and variable length of the helical elements it exhibits a remarkable structural conservation. Atomic force microscopy imaging revealed a common domain organization and a dynamic arrangement of structural elements connected with flexible linkers across all four Betacoronavirus subgenera. Together, these results reveal common features of a critical regulatory region shared between different Betacoronavirus RNA genomes, which may allow targeting of these RNAs by broad-spectrum antiviral therapeutics.


Assuntos
Betacoronavirus , RNA Viral , Betacoronavirus/genética , Microscopia Crioeletrônica , Genoma Viral/genética , RNA Viral/química , RNA Viral/genética , RNA Viral/ultraestrutura , SARS-CoV-2/genética
2.
Influenza Other Respir Viruses ; 18(3): e13271, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38501305

RESUMO

BACKGROUND: Although influenza viruses cause only one-fifth of severe acute respiratory infections (SARI) in Burkina Faso, the other viral causes of SARI remain poorly investigated to inform clinical and preventive decision making. METHODS: Between 2016 and 2019, we prospectively enrolled inpatients meeting the World Health Organization (WHO) case definition of SARI in Burkina Faso. Results of viral etiologies among inpatients tested negative for influenza using the Fast Track Diagnostics Respiratory Kits (FTD-33) were reported. RESULTS: Of 1541 specimens tested, at least one respiratory virus was detected in 76.1% of the 1231 specimens negative for influenza virus. Human rhinoviruses (hRVs) were the most detected pathogens (476; 38.7%), followed by human adenoviruses (hAdV) (17.1%, 210/1231), human respiratory syncytial virus (hRSV) (15.4%, 189/1231), enterovirus (EnV) (11.2%, 138/1231), human bocavirus (hBoV) (7.9%, 97/1231), parainfluenza 3 (hPIV3) (6.1%, 75/1231), human metapneumovirus (hMPV) (6.0%,74/1321), parainfluenza 4 (hPIV4) (4.1%, 51/1231), human coronavirus OC43 (hCoV-OC43) (3.4%, 42/1231), human coronavirus HKU1(hCoV-HKU1) (2.7%, 33/1231), human coronavirus NL63 (hCoV-NL63) (2.5%, 31/1231), parainfluenza 1 (hPIV1) (2.0%, 25/1231), parainfluenza 2 (hPIV2) (1.8%, 22/1231), human parechovirus (PeV) (1.1%, 14/1231), and human coronavirus 229E (hCoV-229E) (0.9%, 11/1231). Among SARI cases, infants aged 1-4 years were mostly affected (50.7%; 622/1231), followed by those <1 year of age (35.7%; 438/1231). Most detected pathogens had year-long circulation patterns, with seasonal peaks mainly observed during the cold and dry seasons. CONCLUSION: Several non-influenza viruses are cause of SARI in Burkina Faso. The integration of the most common pathogens into the routine influenza surveillance system might be beneficial.


Assuntos
Enterovirus , Influenza Humana , Orthomyxoviridae , Infecções por Paramyxoviridae , Pneumonia , Infecções Respiratórias , Vírus , Lactente , Humanos , Influenza Humana/epidemiologia , Infecções Respiratórias/epidemiologia , Burkina Faso/epidemiologia , Orthomyxoviridae/genética , Betacoronavirus , Infecções por Paramyxoviridae/epidemiologia
3.
Viruses ; 16(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399988

RESUMO

Viruses evolve many strategies to ensure the efficient synthesis of their proteins. One such strategy is the inhibition of the integrated stress response-the mechanism through which infected cells arrest translation through the phosphorylation of the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2α). We have recently shown that the human common cold betacoronavirus OC43 actively inhibits eIF2α phosphorylation in response to sodium arsenite, a potent inducer of oxidative stress. In this work, we examined the modulation of integrated stress responses by OC43 and demonstrated that the negative feedback regulator of eIF2α phosphorylation GADD34 is strongly induced in infected cells. However, the upregulation of GADD34 expression induced by OC43 was independent from the activation of the integrated stress response and was not required for the inhibition of eIF2α phosphorylation in virus-infected cells. Our work reveals a complex interplay between the common cold coronavirus and the integrated stress response, in which efficient viral protein synthesis is ensured by the inhibition of eIF2α phosphorylation but the GADD34 negative feedback loop is disrupted.


Assuntos
Betacoronavirus , Resfriado Comum , Humanos , Betacoronavirus/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas/metabolismo , Fosforilação , Biossíntese de Proteínas , Fator de Iniciação 2 em Eucariotos/metabolismo , eIF-2 Quinase/genética
4.
EMBO J ; 43(2): 151-167, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200146

RESUMO

Coronaviruses are a group of related RNA viruses that cause respiratory diseases in humans and animals. Understanding the mechanisms of translation regulation during coronaviral infections is critical for developing antiviral therapies and preventing viral spread. Translation of the viral single-stranded RNA genome in the host cell cytoplasm is an essential step in the life cycle of coronaviruses, which affects the cellular mRNA translation landscape in many ways. Here we discuss various viral strategies of translation control, including how members of the Betacoronavirus genus shut down host cell translation and suppress host innate immune functions, as well as the role of the viral non-structural protein 1 (Nsp1) in the process. We also outline the fate of viral RNA, considering stress response mechanisms triggered in infected cells, and describe how unique viral RNA features contribute to programmed ribosomal -1 frameshifting, RNA editing, and translation shutdown evasion.


Assuntos
Infecções por Coronavirus , Coronavirus , Animais , Humanos , Coronavirus/genética , Infecções por Coronavirus/genética , Betacoronavirus/fisiologia , Antivirais/farmacologia , RNA Viral/genética
5.
Nature ; 624(7990): 207-214, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879362

RESUMO

Four endemic seasonal human coronaviruses causing common colds circulate worldwide: HKU1, 229E, NL63 and OC43 (ref. 1). After binding to cellular receptors, coronavirus spike proteins are primed for fusion by transmembrane serine protease 2 (TMPRSS2) or endosomal cathepsins2-9. NL63 uses angiotensin-converting enzyme 2 as a receptor10, whereas 229E uses human aminopeptidase-N11. HKU1 and OC43 spikes bind cells through 9-O-acetylated sialic acid, but their protein receptors remain unknown12. Here we show that TMPRSS2 is a functional receptor for HKU1. TMPRSS2 triggers HKU1 spike-mediated cell-cell fusion and pseudovirus infection. Catalytically inactive TMPRSS2 mutants do not cleave HKU1 spike but allow pseudovirus infection. Furthermore, TMPRSS2 binds with high affinity to the HKU1 receptor binding domain (Kd 334 and 137 nM for HKU1A and HKU1B genotypes) but not to SARS-CoV-2. Conserved amino acids in the HKU1 receptor binding domain are essential for binding to TMPRSS2 and pseudovirus infection. Newly designed anti-TMPRSS2 nanobodies potently inhibit HKU1 spike attachment to TMPRSS2, fusion and pseudovirus infection. The nanobodies also reduce infection of primary human bronchial cells by an authentic HKU1 virus. Our findings illustrate the various evolution strategies of coronaviruses, which use TMPRSS2 to either directly bind to target cells or prime their spike for membrane fusion and entry.


Assuntos
Betacoronavirus , Receptores Virais , Serina Endopeptidases , Glicoproteína da Espícula de Coronavírus , Humanos , Betacoronavirus/metabolismo , Brônquios/citologia , Brônquios/virologia , Resfriado Comum/tratamento farmacológico , Resfriado Comum/virologia , Fusão de Membrana , Receptores Virais/metabolismo , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/uso terapêutico , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
6.
Nature ; 624(7990): 201-206, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37794193

RESUMO

Coronavirus spike proteins mediate receptor binding and membrane fusion, making them prime targets for neutralizing antibodies. In the cases of severe acute respiratory syndrome coronavirus, severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus, spike proteins transition freely between open and closed conformations to balance host cell attachment and immune evasion1-5. Spike opening exposes domain S1B, allowing it to bind to proteinaceous receptors6,7, and is also thought to enable protein refolding during membrane fusion4,5. However, with a single exception, the pre-fusion spike proteins of all other coronaviruses studied so far have been observed exclusively in the closed state. This raises the possibility of regulation, with spike proteins more commonly transitioning to open states in response to specific cues, rather than spontaneously. Here, using cryogenic electron microscopy and molecular dynamics simulations, we show that the spike protein of the common cold human coronavirus HKU1 undergoes local and long-range conformational changes after binding a sialoglycan-based primary receptor to domain S1A. This binding triggers the transition of S1B domains to the open state through allosteric interdomain crosstalk. Our findings provide detailed insight into coronavirus attachment, with possibilities of dual receptor usage and priming of entry as a means of immune escape.


Assuntos
Betacoronavirus , Polissacarídeos , Ácidos Siálicos , Glicoproteína da Espícula de Coronavírus , Humanos , Regulação Alostérica , Betacoronavirus/química , Betacoronavirus/ultraestrutura , Resfriado Comum/virologia , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Evasão da Resposta Imune
7.
J Virol ; 97(9): e0039523, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37655938

RESUMO

While the spike proteins from severe acute respiratory syndrome coronaviruses-1 and 2 (SARS-CoV and SARS-CoV-2) bind to host angiotensin-converting enzyme 2 (ACE2) to infect cells, the majority of bat sarbecoviruses cannot use ACE2 from any species. Despite their discovery almost 20 years ago, ACE2-independent sarbecoviruses have never been isolated from field samples, leading to the assumption these viruses pose little risk to humans. We have previously shown how spike proteins from a small group of ACE2-independent bat sarbecoviruses may possess the ability to infect human cells in the presence of exogenous trypsin. Here, we adapted our earlier findings into a virus isolation protocol and recovered two new ACE2-dependent viruses, RsYN2012 and RsYN2016A, as well as an ACE2-independent virus, RsHuB2019A. Although our stocks of RsHuB2019A rapidly acquired a tissue-culture adaption that rendered the spike protein resistant to trypsin, trypsin was still required for viral entry, suggesting limitations on the exogenous entry factors that support bat sarbecoviruses. Electron microscopy revealed that ACE2-independent sarbecoviruses have a prominent spike corona and share similar morphology to other coronaviruses. Our findings demonstrate a broader zoonotic threat posed by sarbecoviruses and shed light on the intricacies of coronavirus isolation and propagation in vitro. IMPORTANCE Several coronaviruses have been transmitted from animals to people, and 20 years of virus discovery studies have uncovered thousands of new coronavirus sequences in nature. Most of the animal-derived sarbecoviruses have never been isolated in culture due to cell incompatibilities and a poor understanding of the in vitro requirements for their propagation. Here, we built on our growing body of work characterizing viral entry mechanisms of bat sarbecoviruses in human cells and have developed a virus isolation protocol that allows for the exploration of these understudied viruses. Our protocol is robust and practical, leading to successful isolation of more sarbecoviruses than previous approaches and from field samples that had been collected over a 10-year longitudinal study.


Assuntos
Enzima de Conversão de Angiotensina 2 , Betacoronavirus , Quirópteros , Receptores Virais , Animais , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Quirópteros/virologia , População do Leste Asiático , Estudos Longitudinais , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tripsina , Betacoronavirus/isolamento & purificação , Zoonoses
8.
Viruses ; 15(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766371

RESUMO

The genetic diversity of coronaviruses (CoVs) is high, and their infection in animals has not yet been fully revealed. By RT-PCR detection of the partial RNA-dependent RNA polymerase (RdRp) gene of CoVs, we screened a total of 502 small mammals in the Dali and Nujiang prefectures of Western Yunnan Province, China. The number of overall CoV positives was 20, including ß-CoV (n = 13) and α-CoV (n = 7), with a 3.98% prevalence in rectal tissue samples. The identity of the partial RdRp genes obtained for 13 strains of ß-CoV was 83.42-99.23% at the nucleotide level, and it is worth noting that the two strains from Kachin red-backed voles showed high identity to BOV-36/IND/2015 from Indian bovines and DcCoV-HKU23 from dromedary camels (Camelus dromedarius) in Morocco; the nucleotide identity was between 97.86 and 98.33%. Similarly, the identity of the seven strains of α-CoV among the partial RdRp sequences was 94.00-99.18% at nucleotide levels. The viral load in different tissues was measured by quantitative RT-PCR (qRT-PCR). The average CoV viral load in small mammalian rectal tissue was 1.35 × 106 copies/g; differently, the mean CoV viral load in liver, heart, lung, spleen, and kidney tissue was from 0.97 × 103 to 3.95 × 103 copies/g, which revealed that CoV has extensive tropism in rectal tissue in small mammals (p < 0.0001). These results revealed the genetic diversity, epidemiology, and infective tropism of α-CoV and ß-CoV in small mammals from Dali and Nujiang, which deepens the comprehension of the retention and infection of coronavirus in natural hosts.


Assuntos
Infecções por Coronavirus , Coronavirus , Animais , Bovinos , Betacoronavirus , China/epidemiologia , Mamíferos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Arvicolinae , Camelus , Nucleotídeos , RNA Polimerase Dependente de RNA
9.
Emerg Microbes Infect ; 12(2): 2225932, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37334745

RESUMO

Zoonotic coronaviruses (CoVs) caused major human outbreaks in the last two decades. One of the biggest challenges during future CoV disease is ensuring rapid detection and diagnosis at the early phase of a zoonotic event, and active surveillance to the zoonotic high-risk CoVs appears the best way at the present time to provide early warnings. However, there is neither an evaluation of spillover potential nor diagnosis tools for the majority of CoVs. Here, we analyzed the viral traits, including population, genetic diversity, receptor and host species for all 40 alpha- and beta-CoV species, where the human-infecting CoVs are from. Our analysis proposed 20 high-risk CoV species, including 6 of which jumped to human, 3 with evidence of spillover but not to human and 11 without evidence of spillover yet, which prediction were further supported by an analysis of the history of CoV zoonosis. We also found three major zoonotic sources: multiple bat-origin CoV species, the rodent-origin sub-genus Embecovirus and the CoV species AlphaCoV1. Moreover, the Rhinolophidae and Hipposideridae bats harbour a significantly higher proportion of human-threatening CoV species, whereas camel, civet, swine and pangolin could be important intermediate hosts during CoV zoonotic transmission. Finally, we established quick and sensitive serologic tools for a list of proposed high-risk CoVs and validated the methods in serum cross-reaction assays using hyper-immune rabbit sera or clinical samples. By comprehensive risk assessment of the potential human-infecting CoVs, our work provides a theoretical or practical basis for future CoV disease preparedness.


Assuntos
Quirópteros , Infecções por Coronavirus , Coronavirus , Humanos , Animais , Suínos , Coelhos , Coronavirus/genética , Filogenia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Zoonoses , Betacoronavirus
10.
J Med Virol ; 95(6): e28861, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310144

RESUMO

The seasonal human coronaviruses (HCoVs) have zoonotic origins, repeated infections, and global transmission. The objectives of this study are to elaborate the epidemiological and evolutionary characteristics of HCoVs from patients with acute respiratory illness. We conducted a multicenter surveillance at 36 sentinel hospitals of Beijing Metropolis, China, during 2016-2019. Patients with influenza-like illness (ILI) and severe acute respiratory infection (SARI) were included, and submitted respiratory samples for screening HCoVs by multiplex real-time reverse transcription-polymerase chain reaction assays. All the positive samples were used for metatranscriptomic sequencing to get whole genomes of HCoVs for genetical and evolutionary analyses. Totally, 321 of 15 677 patients with ILI or SARI were found to be positive for HCoVs, with an infection rate of 2.0% (95% confidence interval, 1.8%-2.3%). HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1 infections accounted for 18.7%, 38.3%, 40.5%, and 2.5%, respectively. In comparison to ILI cases, SARI cases were significantly older, more likely caused by HCoV-229E and HCoV-OC43, and more often co-infected with other respiratory pathogens. A total of 179 full genome sequences of HCoVs were obtained from 321 positive patients. The phylogenetical analyses revealed that HCoV-229E, HCoV-NL63 and HCoV-OC43 continuously yielded novel lineages, respectively. The nonsynonymous to synonymous ratio of all key genes in each HCoV was less than one, indicating that all four HCoVs were under negative selection pressure. Multiple substitution modes were observed in spike glycoprotein among the four HCoVs. Our findings highlight the importance of enhancing surveillance on HCoVs, and imply that more variants might occur in the future.


Assuntos
Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Humanos , Estações do Ano , Betacoronavirus , China , Coronavirus Humano OC43/genética
12.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725209

RESUMO

AIMS: We aimed to investigate the prevalence of rotavirus and coronavirus in dipterans that commonly inhabit the environment of dairy farms. METHODS AND RESULTS: We collected 217 insect specimens from nine dairy farms, which were examined through hemi-nested RT-PCR followed by Sanger sequencing in search of VP1 and N genes for rotavirus and bovine coronavirus-BCoV, respectively. With a predominance of Muscidae (152/217 = 70%) 11 families of Diptera were identified. Rotavirus A (RVA) and betacoronavirus (BCoV) were detected in 14.7% (32/217) and 4.6% (10/217) of the dipterans, respectively. Sequencing of the amplicons was possible for 11.5% (25/217) of RVA and 0.5% (1/217) of BCoV, confirming the presence of these pathogens. CONCLUSIONS: Our findings highlight the role of dipterans as carriers of RVA and BCoV of great relevance for public and animal health.


Assuntos
Doenças dos Bovinos , Dípteros , Infecções por Rotavirus , Rotavirus , Animais , Bovinos , Rotavirus/genética , Betacoronavirus , Fazendas , Insetos , Fezes , Doenças dos Bovinos/epidemiologia , Diarreia/epidemiologia , Filogenia , Genótipo
13.
Artigo em Inglês | MEDLINE | ID: mdl-36834395

RESUMO

Being diverse and widely distributed globally, bats are a known reservoir of a series of emerging zoonotic viruses. We studied fecal viromes of twenty-six bats captured in 2015 in the Moscow Region and found 13 of 26 (50%) samples to be coronavirus positive. Of P. nathusii (the Nathusius' pipistrelle), 3 of 6 samples were carriers of a novel MERS-related betacoronavirus. We sequenced and assembled the complete genome of this betacoronavirus and named it MOW-BatCoV strain 15-22. Whole genome phylogenetic analysis suggests that MOW-BatCoV/15-22 falls into a distinct subclade closely related to human and camel MERS-CoV. Unexpectedly, the phylogenetic analysis of the novel MOW-BatCoV/15-22 spike gene showed the closest similarity to CoVs from Erinaceus europaeus (European hedgehog). We suppose MOW-BatCoV could have arisen as a result of recombination between ancestral viruses of bats and hedgehogs. Molecular docking analysis of MOW-BatCoV/15-22 spike glycoprotein binding to DPP4 receptors of different mammals predicted the highest binding ability with DPP4 of the Myotis brandtii bat (docking score -320.15) and the E. europaeus (docking score -294.51). Hedgehogs are widely kept as pets and are commonly found in areas of human habitation. As this novel bat-CoV is likely capable of infecting hedgehogs, we suggest hedgehogs can act as intermediate hosts between bats and humans for other bat-CoVs.


Assuntos
Quirópteros , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Betacoronavirus , Quirópteros/virologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Ouriços/virologia , Simulação de Acoplamento Molecular , Moscou , Filogenia , Federação Russa
14.
Sci Rep ; 13(1): 2310, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759702

RESUMO

Four endemic human coronaviruses (HCoV), HCoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-OC43, are closely related to SARS-CoV-2. These coronaviruses are known to infect humans living in temperate areas, including children under 5 years old; however, the seroprevalence of four HCoVs among children in tropical areas, including the Philippines, remains unclear. This study aimed to assess the prevalence of antibodies against four HCoVs and to determine the reactivity and neutralization of these antibodies against SARS-CoV-2 among children in the Philippines. A total of 315 serum samples collected from 2015 to 2018, before the emergence of SARS-CoV-2, in Biliran island, Philippines, were tested for the presence of antibodies against four HCoVs and SARS-CoV-2 using recombinant spike ectodomain proteins by IgG-enzyme-linked immunosorbent assay (ELISA). Reactivity to and neutralization of SARS-CoV-2 were also investigated. The seroprevalence of the four HCoVs was 63.8% for HCoV-229E, 71.4% for HCoV-NL63, 76.5% for HCoV-HKU1, and 83.5% for HCoV-OC43 by ELISA. Age group analysis indicated that seropositivity to all HCoVs reached 80% by 2-3 years of age. While 69/315 (21.9%) of the samples showed reactive to SARS-CoV-2, almost no neutralization against SARS-CoV-2 was detected using neutralization assay. Reactivity of antibodies against SARS-CoV-2 spike protein obtained by ELISA may not correlate with neutralization capability.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Infecções por Coronavirus , Coronavirus , Criança , Pré-Escolar , Humanos , Anticorpos Antivirais , Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , COVID-19/epidemiologia , COVID-19/imunologia , Filipinas/epidemiologia , Proteínas Recombinantes , SARS-CoV-2 , Estudos Soroepidemiológicos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Coronavirus/genética , Coronavirus/imunologia , Betacoronavirus , Anticorpos Neutralizantes/imunologia
15.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36707090

RESUMO

BACKGROUND: Immunocompromised patients are at increased risk of SARS-CoV-2 infections. Patients undergoing chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory B-cell malignancies are uniquely immunosuppressed due to CAR T-mediated B-cell aplasia (BCA). While SARS-CoV-2 mortality rates of 33%-40% are reported in adult CAR T-cell recipients, outcomes in pediatric and young adult CAR T-cell recipients are limited. METHODS: We created an international retrospective registry of CAR T recipients aged 0-30 years infected with SARS-CoV-2 within 2 months prior to or any time after CAR T infusion. SARS-CoV-2-associated illness was graded as asymptomatic, mild, moderate, or severe COVID-19, or multisystem inflammatory syndrome in children (MIS-C). To assess for risk factors associated with significant SARS-CoV-2 infections (infections requiring hospital admission for respiratory distress or supplemental oxygen), univariate and multivariable regression analyses were performed. RESULTS: Nine centers contributed 78 infections in 75 patients. Of 70 SARS-CoV-2 infections occurring after CAR T infusion, 13 (18.6%) were classified as asymptomatic, 37 (52.9%) mild, 11 (15.7%) moderate, and 6 (8.6%) severe COVID-19. Three (4.3%) were classified as MIS-C. BCA was not significantly associated with infection severity. Prior to the emergence of the Omicron variant, of 47 infections, 19 (40.4%) resulted in hospital admission and 7 (14.9%) required intensive care, while after the emergence of the Omicron variant, of 23 infections, only 1 (4.3%) required admission and the remaining 22 (95.7%) had asymptomatic or mild COVID-19. Death occurred in 3 of 70 (4.3%); each death involved coinfection or life-threatening condition. In a multivariable model, factors associated with significant SARS-CoV-2 infection included having two or more comorbidities (OR 7.73, CI 1.05 to 74.8, p=0.048) and age ≥18 years (OR 9.51, CI 1.90 to 82.2, p=0.014). In the eight patients infected with SARS-CoV-2 before CAR T, half of these patients had their CAR T infusion delayed by 15-30 days. CONCLUSIONS: In a large international cohort of pediatric and young adult CAR-T recipients, SARS-CoV-2 infections resulted in frequent hospital and intensive care unit admissions and were associated with mortality in 4.3%. Patients with two or more comorbidities or aged ≥18 years were more likely to experience significant illness. Suspected Omicron infections were associated with milder disease.


Assuntos
COVID-19 , Infecções por Coronavirus , Pneumonia Viral , Receptores de Antígenos Quiméricos , Humanos , Criança , Adulto Jovem , Adolescente , Adulto , COVID-19/complicações , SARS-CoV-2 , Estudos Retrospectivos , Pneumonia Viral/complicações , Infecções por Coronavirus/complicações , Betacoronavirus , Recidiva Local de Neoplasia , Sistema de Registros , Terapia Baseada em Transplante de Células e Tecidos
16.
Pediatr Infect Dis J ; 42(2): 136-142, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638400

RESUMO

BACKGROUND: Information on the impact of the different variants in children in Latin America is scarce. The objective of this study was to describe epidemiologic and clinical features of COVID-19 infection in children under 18 years of age in Argentina, comparing the periods before and after the circulation of new variants. METHODS: Observational, cross-sectional, multicentric, analytical study. All patients under 18 years of age with confirmed SARS-CoV-2 infection admitted at 22 healthcare centers were included. Two study periods were established: Period 1 (EW10-2020 to EW12-2021) for the Wuhan strain; Period 2 (EW13 to EW35 2021) for Alpha, Gamma, Delta and Lambda variants. FINDINGS: A total of 6330 confirmed cases were included. Period 1: 3575 (56.5%), period 2: 2755 (43.5%). During period 2, a lower number of asymptomatic cases was observed, while general, respiratory and neurologic signs and symptoms increased in all age groups. Oxygen therapy requirement was higher during the first period (36.7% vs 19.1%; P < 0.001). No significant differences were observed in the rates of severe or critical cases (6.3% vs 5,4%; P = 0.102), intensive care admission (2.1% vs 2%; P < 0.656) or case fatality (0.3% vs 0.5 %; P < 0.229). MIS-C cases occurred more frequently during the first period (1.9% vs 1.1%; P = 0.009). INTERPRETATION: The clinical spectrum of COVID-19 in Argentina has evolved. With the emergence of new variants, although the number of asymptomatic cases declined, numbers of severe and critical cases, as well as case fatality rates in children, remained unchanged.


Assuntos
COVID-19 , Infecções por Coronavirus , Pneumonia Viral , Adolescente , Criança , Humanos , Argentina/epidemiologia , Betacoronavirus , Infecções por Coronavirus/diagnóstico , COVID-19/epidemiologia , Estudos Transversais , Pneumonia Viral/diagnóstico , SARS-CoV-2
17.
EMBO J ; 42(4): e111737, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36519268

RESUMO

Bat-origin RshSTT182 and RshSTT200 coronaviruses (CoV) from Rhinolophus shameli in Southeast Asia (Cambodia) share 92.6% whole-genome identity with SARS-CoV-2 and show identical receptor-binding domains (RBDs). In this study, we determined the structure of the RshSTT182/200 receptor binding domain (RBD) in complex with human angiotensin-converting enzyme 2 (hACE2) and identified the key residues that influence receptor binding. The binding of the RshSTT182/200 RBD to ACE2 orthologs from 39 animal species, including 18 bat species, was used to evaluate its host range. The RshSTT182/200 RBD broadly recognized 21 of 39 ACE2 orthologs, although its binding affinities for the orthologs were weaker than those of the RBD of SARS-CoV-2. Furthermore, RshSTT182 pseudovirus could utilize human, fox, and Rhinolophus affinis ACE2 receptors for cell entry. Moreover, we found that SARS-CoV-2 induces cross-neutralizing antibodies against RshSTT182 pseudovirus. Taken together, these findings indicate that RshSTT182/200 can potentially infect susceptible animals, but requires further evolution to obtain strong interspecies transmission abilities like SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2 , Betacoronavirus , Quirópteros , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Quirópteros/metabolismo , Quirópteros/virologia , Especificidade de Hospedeiro , Ligação Proteica , Receptores Virais/química , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
18.
Sci China Life Sci ; 66(4): 861-874, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36378474

RESUMO

Bats are reservoirs for multiple coronaviruses (CoVs). However, the phylogenetic diversity and transmission of global bat-borne CoVs remain poorly understood. Here, we performed a Bayesian phylogeographic analysis based on 3,594 bat CoV RdRp gene sequences to study the phylogenetic diversity and transmission of bat-borne CoVs and the underlying driving factors. We found that host-switching events occurred more frequently for α-CoVs than for ß-CoVs, and the latter was highly constrained by bat phylogeny. Bat species in the families Molossidae, Rhinolophidae, Miniopteridae, and Vespertilionidae had larger contributions to the cross-species transmission of bat CoVs. Regions of eastern and southern Africa, southern South America, Western Europe, and Southeast Asia were more frequently involved in cross-region transmission events of bat CoVs than other regions. Phylogenetic and geographic distances were the most important factors limiting CoV transmission. Bat taxa and global geographic hotspots associated with bat CoV phylogenetic diversity were identified, and bat species richness, mean annual temperature, global agricultural cropland, and human population density were strongly correlated with the phylogenetic diversity of bat CoVs. These findings provide insight into bat CoV evolution and ecological transmission among bat taxa. The identified hotspots of bat CoV evolution and transmission will guide early warnings of bat-borne CoV zoonotic diseases.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Filogenia , Betacoronavirus/genética , Infecções por Coronavirus/transmissão , Animais , Quirópteros , Alphacoronavirus/genética
19.
Antiviral Res ; 208: 105450, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36354082

RESUMO

FB2001 is a drug candidate that targets the main protease of SARS-CoV-2 via covalently binding to cysteine 145. In this study, we evaluated the inhibitory activities of FB2001 against several SARS-CoV-2 variants in vitro and in vivo (in mice), and we also evaluated the histopathological analysis and immunostaining of FB2001 on lung and brain which have been rarely reported. The results showed that FB2001 exhibited potent antiviral efficacy against several current SARS-CoV-2 variants in Vero E6 cells, namely, B.1.1.7 (Alpha): EC50 = 0.39 ± 0.01 µM, EC90 = 0.75 ± 0.01 µM; B.1.351 (Beta): EC50 = 0.28 ± 0.11 µM, EC90 = 0.57 ± 0.21 µM; B.1.617.2 (Delta): EC50 = 0.27 ± 0.05 µM, EC90 = 0.81 ± 0.20 µM; B.1.1.529 (Omicron): EC50 = 0.26 ± 0.06 µM and EC50 = 0.042 ± 0.007 µM (in the presence of a P-glycoprotein inhibitor). FB2001 remained potent against SARS-CoV-2 replication in the presence of high concentrations of human serum, which indicating that human serum had no significant effect on the in vitro inhibitory activity. Additionally, this inhibitor exhibited an additive effect against SARS-CoV-2 when combined with Remdesivir. Furthermore, FB2001 significantly reduced the SARS-CoV-2 copy numbers and titers in the lungs and brains in vivo, and alleviated the pathological symptoms. In addition, FB2001 could alleviated local bleeding, erythrocyte overflow, edema, and inflammatory cell infiltration in brain tissue, and inhibitors reducing viral titers and improving inflammation in the brain have been rarely reported. A physiologically based pharmacokinetic model was established and verified to predict the FB2001 concentration in human lungs. When FB2001 was administered at 200 mg twice a day for 5 days, the observed Ctrough ss in plasma and predicted Ctrough ss of lung total concentration were 0.163 and 2.5 µg/mL, which were approximately 9 and 132-fold higher than the EC50 of 0.019 µg/mL (0.042 µM) against Omicron variant. Taken together, our study suggests that FB2001 is a promising therapeutic agent in COVID-19 treatment and can be combined with remdesivir to achieve improved clinical outcomes. Owing to its good safety and tolerability in healthy human (NCT05197179 and NCT04766931), FB2001 has been approved for Phase II/III clinical trial (NCT05445934).


Assuntos
Tratamento Farmacológico da COVID-19 , Infecções por Coronavirus , Pneumonia Viral , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Pandemias , Pneumonia Viral/tratamento farmacológico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , SARS-CoV-2 , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto
20.
Trials ; 23(1): 932, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348476

RESUMO

BACKGROUND: COVID-19 poses a global health challenge with more than 325 million cumulative cases and above 5 million cumulative deaths reported till January 17, 2022, by the World Health Organization. Several potential treatments to treat COVID-19 are under clinical trials including antivirals, steroids, immunomodulators, non-specific IVIG, monoclonal antibodies, and passive immunization through convalescent plasma. The need to produce anti-COVID-19 IVIG therapy must be continued, alongside the current treatment modalities, considering the virus is still mutating into variants of concern. In this context, as the present study will exploit pooled diversified convalescent plasma collected from recovered COVID-19 patients, the proposed hyperimmune Anti-COVID-19 intravenous immunoglobulin (C-IVIG) therapy would be able to counter new infectious COVID-19 variants by neutralizing the virus particles. After the successful outcome of the phase I/II clinical trial of C-IVIG, the current study aims to further evaluate the safety and efficacy of single low dose C-IVIG in severe COVID-19 patients for its phase II/III clinical trial. METHODS: This is a phase II/III, adaptive, multi-center, single-blinded, randomized controlled superiority trial of SARS-CoV-2 specific polyclonal IVIG (C-IVIG). Patients fulfilling the eligibility criteria will be block-randomized using a sealed envelope system to receive either 0.15 g/Kg C-IVIG with standard of care (SOC) or standard of care alone in 2:1 ratio. The patients will be followed-up for 28 days to assess the primary and secondary outcomes. DISCUSSION: This is a phase II/III clinical trial evaluating safety and efficacy of hyperimmune anti-COVID-19 intravenous immunoglobulin (C-IVIG) in severe COVID-19 patients. This study will provide clinical evidence to use C-IVIG as one of the first-line therapeutic options for severe COVID-19 patients. TRIAL REGISTRATION: Registered at clinicaltrial.gov with NCT number NCT04891172 on May 18, 2021.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecções por Coronavirus , Pneumonia Viral , Humanos , SARS-CoV-2 , Betacoronavirus , Pneumonia Viral/tratamento farmacológico , Imunoglobulinas Intravenosas/efeitos adversos , Infecções por Coronavirus/tratamento farmacológico , Pandemias , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA